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Abstract. The rotational collision number, vibrational relaxation time, and transport coefficients of real gases were used 
to determine key functions for molecular collision models.  The functions determined were the characteristic function for 
rotationally inelastic collision cross section in the statistical inelastic cross section (SICS) model, parameters for the 
transient probability density function in the vibrationally inelastic collision cross section (VICS) model, and the 
probability density function of the deflection angle for these diatomic models.  The validity of the present models was 
investigated by applying a Monte Carlo simulation of hypersonic rarefied gas flow around a flat plate and comparing the 
results with experimental data. The modeled profiles of rotational temperature and rotational energy distribution near the 
plate were in reasonable agreement with those found by experiment.  
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INTRODUCTION 

The direct simulation Monte Carlo (DSMC) method1 is an efficient tool for the prediction of non-equilibrium 
phenomena in rarefied gas flow. Realistic and effective molecular collision models are required in order to apply the 
DSMC method to rarefied gas flow problems. For elastic molecular collisions, accurate and realistic calculation 
techniques based on scattering theory as well as simple scattering models2,3,4,5,6 based on kinetic theory have been 
developed and applied to various rarefied gas flow problems. For a rotationally and vibrationally inelastic molecular 
collision, a simple model is more practical for engineering; because inelastic collision phenomena are quite 
complicated; enormous calculation time may be required for an accurate approach. Some attractive models have 
been developed, including the dynamic molecular collision (DMC) model7, the phenomenological model formulated 
by Borgnakke and Larsen (the BL model8), the statistical inelastic cross section (SICS) model9 for rotationally 
inelastic collisions, and the BL model10 and the vibrationally inelastic cross section (VICS) model11 for vibrationally 
inelastic collisions. 

These diatomic collision models require the probability density function for deflection angle, the probability 
density function for inelastic collision and energy transition, or the cross sections for inelastic collisions and energy 
transition, in order to express the transport coefficients and the inelastic collision number or relaxation time of real 
gases. In the present study, the function for the rotationally inelastic collision cross section of the SICS model, 
parameters for the vibrationally inelastic collision probability of the VICS model, and the probability density 
function for deflection angle were defined from transport coefficients, rotational collision number, and vibrational 
relaxation time of nitrogen gas. The validity of the present cross section model was examined by applying it to the 
simulation of hypersonic rarefied gas flow around a flat plate and comparing the results with experimental data12. 



BASIC EQUATION AND MOLECULAR COLLISION  MODELS 

Generalized Boltzmann Equation 

The motion of a diatomic molecule with continuous translational and rotational energy and discrete vibrational 
energy is described by the generalized Boltzmann equation as 
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where t is time, r is the physical space coordinate, n is the number density,  χ is the deflection angle, є is the azimuth 
angle, g is the relative velocity, f is the distribution function for velocity class c, rotational energy class ξ and 
vibrational energy of quantum level i, lmax is the maximum vibrational level, and
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ij i jI is the differential cross 
section. Variables with a prime (‘) refer to the post-collision state.  In this study, the differential cross section is 
reduced to the following form by assuming that molecular collision is limited to elastic, rotationally inelastic, and 
vibrationally inelastic collisions. 
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where pχ and єp are the probability density functions for deflection and azimuth angles, respectively. The terms σt  
pel, pR, pv, pξ’ξ1’, pi’j’ are respectively the total cross section, the probability density function for elastic, rotational and 
vibrational collisions, and the rotational and vibrational transition probabilities.  They are defined as 
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respectively , where σel is the elastic collision cross section, σR the rotational collision cross section, σij the 
vibrational collision cross section, sξξ1,ξ’ξ1 the rotational transition cross section , and sij,i’j’ the vibrational transition 
cross section. The DSMC method requires pχ , єp  , and a set of cross sections (σel, sξξ1,ξ’ξ1, and sij,i’j’) or σt and a set of 
collision probabilities (pel, pR, pv, pξ’ξ1’, pi’j’). 
 

Molecular Collision Models 

a. Elastic Collision Model 

The VSS model for a Lennard-Jones potential4 is applied here for elastic collisions. The cross section σel is 
defined as 
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where Q(1) and Q(2) are cross sections for diffusion and viscosity, respectively; the definitions for these terms are 
found in Ref.13 and numerical values are listed in Refs.4 and 6. 



b. Rotationally Inelastic Collision Model 

For rotationally inelastic collisions, the SICS model9 is used. The rotational collision cross section σR and the 
transient probability pξ’ξ1’ is defined as 
 ( )σ σ=R el Z E , and (10) 
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where Etr is the translational energy and Z is a characteristic function for the rotationally inelastic collision cross 
section. In this study, the function Z is assumed to be of the following form. 
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where Eth  is the threshold energy taken to be 6kθr with the characteristic rotational temperature θr, εLJ is the depth of 
the potential well of the Lennard-Jones potential are fitting parameters defined from the rotational collision number 
ZR of a rigid rotor model. Parameters a0=0.1009, a1=0.6093 and a2=-0.1586 are obtained with εLJ / k =91.5 K (k is 
the Boltzmann constant), and θr=2.863 K for nitrogen from the rotational collision number ZR of the rigid rotor 
model14 as shown in Fig.1a. 

c. Vibrationally Inelastic Collision Model 

For vibrationally inelastic collisions, the VICS model11 is introduced. The vibrational transition cross section 
sij,i’j’ is defined as 
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where Ei is the vibrational energy of quantum level i,  ηv is the vibrational steric factor, and pij is the vibrational 
transition probability defined as 
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where ( )( )nL xα  is the associated Laguerre polynomial, I = min(i,i’), J = max(j,j’), Lv is the steepness parameter, θv is 
the characteristic vibrational temperature, and h is Plank’s constant. For one-quantum transitions i → i ± 1 and j → j 
± 1, the vibrational transition probability pij is also defined as 

 
( )1/ 2

2
, ' '

2sin ,
2

π θω
ω

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦

v
ij i j v

v v

IJ kp g
L h

, (18) 



The vibrational steric factor ηv and the steepness parameter Lv are determined from the Millikan-White formula.  
Using a Landau-Teller plot of vibrational relaxation obtained by the Millikan-White formula, as shown in Fig.1b, 
and setting θv = 3393 K for nitrogen, we obtain Lv = 0.25Åand ηv= 1.2. 

d. Probability density function of deflection angle and azimuth angle 

The probability density functions for azimuth angle єp  and deflection angle pχ for elastic, rotationally inelastic, 
and vibrationally inelastic collisions are defined as 

 
1

2π
=єp , (19) 

 
2 1cos sin

2 2
( 0)                   

α

χ

χ χα

δ χ

−⎧ ⎛ ⎞ ⎛ ⎞ ≤⎪ ⎜ ⎟ ⎜ ⎟= ⎝ ⎠ ⎝ ⎠⎨
⎪ =⎩

r el

r el

b b
p

b > b
,and (20) 

 
(1) (2)

(1) (2)

2
2

α −
=

+
Q Q
Q Q

, (21) 

respectively, where δ is the Dirac delta function, br is the reduced impact parameter15 which is introduced so as to 
describe the transport coefficients of real gases, and bel is  the impact parameter for elastic collisions. The reduced 
and elastic impact parameters are defined as 
  max , /σ π= =r r nd el elb b R b , (22) 
respectively, where Rnd is an uniform random number in the range [0,1], and brmax is the maximum value of the 
reduced impact parameter defined as 

 ( )max , /σ σ σ π= + +r el R i jb . (23) 

 

CALCULATION OF HYPERSONIC FLOW AROUND A FLAT PLATE AND 
DISCUSSION 

A set of inelastic cross section models (SICS-VICS model) presented in this study was applied to the simulation 
of hypersonic flow around a flat plate and compared with the experimental results. The computational domain was 
taken as -0.25 ≤ x/L ≤ 1.25, -0.8 ≤ y/L ≤ 0.7 and divided into collision and data cells Δx/L = Δy/L =0.0025, where L is 
the length of the flat plate. The flat plate had a thickness d/L=3/26 and the leading edge angle 30°and was set to 0 ≤ 
x/L ≤ 1 and -3/26 ≤ y/L ≤ 0.0. The upstream boundary conditions at x/L=-0.25 and y/L=-0.8,0.7 were set to the 
equilibrium uniform flow, and the down stream boundary condition at x/L=1.25 was set to be ( ) / 0.in f x∂ ∂ =  The 
surface of the plate was set to the diffuse reflection with the temperature Tw. Initially, the computational domain was 
set to be an upstream equilibrium condition. Influx molecules across the upstream boundary were assigned an 
equilibrium Maxwellian distribution by upstream boundary conditions. The time evolution of the position and 
velocity of each molecule was simulated using the same algorithm used in reference 1, except for the treatment of 
estimating molecular collisions.  

In this paper, collision sampling was conducted using the null-collision technique16. After the steady state was 
established, flow properties were calculated and averaged until statistical fluctuations became sufficiently small. 
Figures 2(a) and 2(b) show comparisons of the rotational temperature profiles obtained with the SICS-VICS model 
and experimental data near the flat plate surface (y=1mm), and perpendicular to the plate surface. The experimental 
conditions were as follows: upstream Mach number M=4.89, upstream temperature T∞=119K, surface temperature of 
the flat plate Tw=300K, and upstream Knudsen number Kn=l0/L=0.02, where l0 is the mean free path in the upstream 
equilibrium state. As shown in Fig. 2(a), the rotational temperature profile near the flat plate surface obtained by the 
SICS-VICS models agrees reasonably with experimentally measured values. On the other hand, some discrepancies 
are observed in the rotational temperature profiles perpendicular to the plate, and these discrepancies increase with 
increasing x and y as shown in Fig.2(b). The relative rotational energy distributions of the SICS-VICS model are in 
reasonable agreement with those of experiment for the position x=5 mm, however discrepancies increase with 
increasing x and y as shown in Figs.3(a) and (b) which is similar to the rotational temperature distribution in Fig.2(b). 
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Figure 4 shows the vibrational temperature distribution around the flat plate. Some of the molecules were excited to 
the vibrational energy level from the ground state i=0 to i=1 by interacting with the flat plate, and traveled down 
stream with very little vibrationally inelastic collision probability as shown in Fig.4; this indicates that the flow field 
was not affected by the vibrationally inelastic collisions in this study. The results of this study suggest that the 
characteristic function or parameters for rotationally inelastic collision model require some appropriate optimization. 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
FIGURE 1. (a) Comparison of rotational collision number given by the SICS-VISC and rigid rotor models, (b) Comparison of 

the Landau-Teller plot of vibrational relaxation obtained by the SICS-VICS model and the Millikan-White formula 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

FIGURE 2. Comparison between calculation results and experimental data. (a) Rotational temperature profile near the flat plate 
surface (y=1mm), (b) Rotational temperature profiles perpendicular to the plate. 
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FIGURE 3.  Comparison of relative rotational energy distributions given by the SICS-VICS model and experimental data at  

 (a) x=5mm, (b) x=20mm. 
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FIGURE 4.  Profile of non-dimensional vibrational temperature Tv/T∞ around the flat plate. 

 

CONCLUDING REMARKS 

The rotational collision number, vibrational relaxation time, and transport coefficients of a real gas were used to 
determine the parameters of the characteristic function for the rotationally inelastic collision cross section in the 
SICS model, the fitting parameters for vibrationally inelastic transient probability in the VICS model, and the 
probability density function of deflection angle for diatomic molecular collision models. The validity of the present 
model was tested by applying it to the simulation of hypersonic flow around a flat plate and comparing the results 
with the experimental data. The rotational temperature profile near the flat plate surface and the relative rotational 
energy distribution given by the SICS-VICS models agree reasonably with those obtained by experiment. However 
discrepancies between the simulation and experiment increased with increasing distance from the flat plate. This 
study shows that the characteristic function or parameters for the rotationally inelastic collision model require some 
appropriate optimization. 
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